Senin, 10 Oktober 2016

TUGAS TERSTRUKTUR 3
PENJELASAN KENAPA SUATU SIKLOHEKSANA TERDISTRIBUSI-CIS-1,3 LEBIH STABIL DARIPADA STRUKTUR-TRANS-PADANAN NYA
Kestabilan (ketidakreaktifan) sikloalkana pada mulanya dijelaskan dengan “teori regangan Baeyer” (Baeyer’s strain theory). Menurut teori ini, senyawa siklik seperti halnya sikloalkana membentuk cincin datar. Bila sudut-sudut ikatan dalam senyawa siklik menyimpang dari sudut ikatan tetrahedral (109,50) maka molekulnya mengalami regangan. Makin besar penyimpangannya terhadap sudut ikatan tetrahedral, molekulnya makin regang, dan berakibat molekul tersebut makin reaktif. Bila sikloalkana mengikat substituen pada dua atau lebih atom karbon, maka terjadi isomer cis-trans.
Setiap atom karbon dalam senyawa alkana dan sikloalkana membentuk empat ikatan tunggalatau memiliki hibridisasi sp3. Adanya ikatan tunggal ini menyebabkan atom-atom dalam molekul sikloalkana bisa mengalami perubahan orientasi karena ikatan tunggal dapat berotasi. Perubahan orientasi ini disebut konformasi. setiap konformasi memiliki tingkat energi yang berbeda-beda. semakin rendah tingkat energinya, maka kestabilannya semakin tinggi. begitu pula jika tingkat energinya tinggi, maka ia semakin tidak stabil.
Dua bentuk konformasi utama untuk sikloheksana dikenal sebagai bentuk kursi dan perahu . Bentuk kursi itu lebih stabil daripada bentuk perahu karena bentuk perahu memiliki bayangan ikatan C-C dan C-H. Hal ini dapat dilihat lebih baik dalam proyeksi Newman yang telah diambil seperti yang kita cari sepanjang dua ikatan di saat yang sama -yakni ikatan 2-3 dan 6-5. Dalam konformasi kursi, tidak ada C-C yang “bayangan” ikatan. Namun, dalam konformasi perahu, ikatan 1-2 ini bayangan dengan ikatan 3-4, 1-6 dan ikatan yang bayangan dengan ikatan 5-4. Ini berarti bahwa konformasi perahu kurang stabil daripada konformasi kursi dan sebagian besar molekul sikloheksana ada dalam konformasi kursi. Namun, hambatan energi kecil cukup untuk molekul sikloheksana melewati konformasi perahu dalam proses yang disebut ' membalik cincin '. Kemampuan molekul untuk sikloheksana cincin-lain adalah penting ketika substituen yang ada. Setiap atom karbon di struktur kursi memiliki dua ikatan C-H, tetapi ini tidak identik . Salah satu ikatannya disebut sejajar karena kira-kira pada bidang cincin. Ikatan C-H yang lain vertikal terhadap bidang cincin dan disebut ikatan aksial.
Sudut C-C-C : 109,5°(tetrahedral)
Semua atom H pada posisi staggered
Axial : tegak lurus bidang rata-rata cincin
Equatorial : sejajar bidang rata-rata cincin

Sudut C-C-C: 109,5°(tetrahedral)
Tidak semua atom H pada posisi staggered
Kurang stabil dibanding bentuk kursi

Energi potensial konformer-konformer pada sikloheksana

Perhatikan : Perubahan konformer pada senyawa siklik memerlukan energi aktivasi yang jauh lebih besar

TUGAS TERSTRUKTUR 4
PROYEKSI FISCHER UNTUK SEMUA KONFIGURASI YANG MUNGKIN DARI 2,3,4-PENTANATRIOL DAN PASANGAN ENANTRIOMERNYA



STEREOKIMIA
A.           KONFIGURASI MUTLAK DAN RELATIF
1. Ketentuan Fischer (Konfigurasi Relatif)
Untuk memudahkan kita dalam mempelajari stereokimia, kita perlu menguasai teknik menggambar molekul yang lazim digunakan. Ada tiga teknik menggambar yang lazim digunakan adalah menggambar struktur 3-D (tiga dimensi), proyeksi Newman, dan proyeksi Fischer.
Proyeksi Fischer sangat bermanfaat dalam penulisan struktur molekul gula(monosakarida). Ada beberapa hal yang harus diperhatikan dalam penulisan proyeksi Fischer. Proyeksi Fischer adalah penggambaran struktur 3-D dalam bentuk 2-D (dua dimensi). Pada proyeksi Fischer rantai karbon ditulis dari atas kebawah, dimana gugus yang paling tinggi prioritasnya diletakkan pada bagian atas. Setiap persilangan garis mengandung satu atom karbon. Atom atau gugus atom disebelah kiri dan kanan dari rantai karbon berarti berada dibagian depan bidang (mengarah kedepan kearah pembaca) dan yang bagian atas atau bawah dari atom karbon yang manjadi perhatian berada dibelakang bidang (menjauhi pembaca).
Untuk senyawa yang mempunyai atom C asimetris lebih dari satu, kadang-kadang digambarkan menurut proyeksi Fisher. Ini untuk penyederhanaan, diberi nama atas nama orang yang mengusulkan, yaitu Fisher.

Sistem penulisan ini berdasarkan atas kesepakatan bahwa garis tegak merupakan proyeksi dari ikatan yang mengarah kebelakang bidang gambar sedangkan garis berarti proyeksi dari ikatan yang mengarah bidang gambar. Letak ini tidak boleh dirobah begitu saja.


Penentuan konfigurasi absolut melalui proyeksi Fisher ini dapat dilakukan sebagai berikut :
_ Tukar posisi proyeksi, sehingga atom/gugus dengan
nomor prioritas terendah berada disebelah atas dan
nomor prioritas yang rendah disebelah bawah.
_ Note : rantai terpanjang digambarkan sebagai garis
vertikal.


Apabila arah nomor prioritas b            c atau 2            3 = R
Apabila arah nomor prioritas b   ¬      c atau 2    ¬     3 = S
Proyeksi Fisher ini sampai sekarang masih banyak digunakan karena sederhana, terutama dalam
bidang kimia karbohidrat
2. Ketentuan Cahn-Ingold-Prelog (Konfigurasi Absolut)
Sistem yang paling sukses untuk menunjukkan konfigurasi senyawa-senyawa umum adalah konvensi Cahn-Ingold-Prelog. System ini menggunakan huruf R atau S untuk setiap pusat kiral dalam molekul dan merupakan pilihan untuk menentukan konfigurasi pusat kiral molekul obat.
Penentuan setiap gugus yang melekat pada pusat kiral berdasarkan nomor atom yang bersangkutan. Nomor atom yang lebih berat memiliki prioritas yang lebih utama, sehingga atom hidrogen (H) pada urutan paling akhir. Jika keseluruhan prioritas disekitar kiral pusat telah ditentukan. jika urutan prioritas gugus tersusun menurut arah jarum jam disekitar pusat kiral, karbon kiral menerima konfigurasi R (Rectus) dan jika sebaliknya sebagai konfigurasi S (Sinister). Cara penentuan konfigusai R atau S sebagai berikut :
1.      Urutkan prioritas keempat atom yang terikat pada pusat kiral berdasarkan nomor atomnya. Diketahui nomor atom Br = 35, Cl = 17, F = 9, H = 1, maka urutan prioritas keempat atom di atas adalah Br > Cl > F > H.
2.      Gambarkan proyeksi molekul sedemikian rupa hingga atom dengan prioritas terendah ada di belakang atau putar struktur (1) dan (2) sehingga atom H ada di belakang.
3.      Buat anak panah mulai dari atom/gugus berprioritas paling tinggi ke prioritas yang lebih rendah.
4.      Bila arah anak panah searah jarum jam, konfigurasinya adalah R. Bila arah anak panah berlawanan dengan arah jarum jam, konfigurasinya adalah S. Jadi konfigurasi struktur (1) adalah S, sedangkan konfigurasi struktur (2) adalah R.

B.            PEMISAHAN CAMPURAN RASEMIK
Sebuah larutan dimana enansiomer dari senyawa ada dalam jumlah yang sama disebut campuran rasemik. Disimbolkan dengan (d/l)- atau ()- sebagai awalan nama zat. Terdiri dari molekul kiral, tetapi tidak memiliki aktivitas optik. Proses terbentuknya dari bahan kiral disebut rasemisasi. Salah satu cara untuk melakukannya adalah dengan mencampur jumlah yang sama zat enansiomer.

Senyawa kiral sudah banyak diproduksi secara sintetis dan umumnya terdapat dalam bentuk campuran rasemat,yaitu campuran pasangan enansiomer sama banyak yang masing-masing memutar bidang polarisasi cahaya sama besar tapi arah berlawanan. Dalam sintesa organik,khususnya dibidang farmasi,ratusanobat–obatan telah disintesa dari berbagi bahan. Sebagian diisolasi langsung dari alam, dan adapula yang dibuat seluruhnya dilaboratorium dan tidak terdapat dialam. Obat-obatan yang disintesis dilaboratorium, umumnya dijual dalam bentuk rasematnya.
Artinya dalam produk tersebut terdapat campuran enatiomer lawannya, misalkan suatu senyawa dengan enatiomer(+) didalamnya juga terdapat senyawa dengan bentuk molekul sama tapi merupakan isomer(-) sehingga dalam keadaan ini obat masih belum bisa digunakan, karena sifat elektroniknya saling meniadakan, akibatnya aktifitas biologis dari senyawa yang diinginkan menjadi inaktif. Sehingga perlu dilakukan proses pemisahan antara campuran enatiomer tersebut dalam rasematnya.
CARA PEMISAHAN RASEMAT
1.        Resolving agent kiral
Teknik ini bergantung pada enantiomer yang memiliki sifat fisik identik dan diastereomer umumnya yang memiliki sifat berbeda. Contoh: memisahkan enansiomer asam2-hydroxylpropionic. Perlu ditambahkan sebagai resolving agent untuk (R)-2-fenil-etilamin. Kedua enantiomer berinteraksi dengan(R)-2-fenil-etilamin untuk membentuk dua spesies yang berbeda garam yang diastereomer satu sama lain. Para diastereomer kemudian dapat mengkristal secara terpisah dan rasemat berhasil dipisahkan secara sempurna.
2.        Kromatografi kiral

Dalam proses ini, rasemat dijalankan melalui kolom yang diisi dengan zat kiral. Enansiomer akan berinteraksi secara berbeda dengan substansi dan kemudian akan mengelusi (atau menyaring melalui substansi) pada tingkat yang berbeda. Teknik ini juga diterapkan untuk campuran enantiomer samping campuran rasemat, misalnya untuk memurnikan spesies dari sejumlah kecil enansiomernya. 

Sabtu, 01 Oktober 2016

STEREOKIMIA :
Stereokimia adalah studi mengenai molekul-molekul dalam ruang tiga dimensi, artinya bagaimana atom-atom dalam sebuah molekul diatur dalam ruang satu terhadap ruang yang lainnya. Dalam stereoisomer, atom yang menghasilkan isomer berada pada posisiyang sama namun memiliki pengaturan keruangan yang berbeda. Isomer geometrik adalah salah satu contoh dari stereoisomer.

A.           ISOMERI GEOMETRI DALAM ALKENA DAN SENYAWA SIKLIK
Isomeri geometri adalah isomeri yang disebabkan oleh perbedaan penataan ruang atom-atom dalam molekul. Isomeri ini berbeda dengan isomeri sebelumnya, karena isomeri jenis ini hanya terjadi pada senyawa yang memiliki ikatan yang kaku dengan dua sisi yang berlainan. Isomeri geometri hanya terjadi pada senyawa alkena.
Adapun untuk senyawa yang mengandung ikatan rangkap (seperti alkena), ikatan rangkap tersebut akan bersifat kaku sehingga tidak dapat berputar. Nah, karena ikatan rangkap ini tidak dapat berputar, maka ketika ada dua senyawa yang memiliki struktur berbeda, itu artinya kedua senyawa tersebut memang merupakan dua senyawa yang berbeda sifat. Dengan kata lain, dua senyawa tersebut adalah isomer satu sama lain.

 Pasangan senyawa pada contoh nomor 2 diatas masuk dalam kategori isomeri geometri atau nama lainnya isomeri cis-trans. Jadi, isomeri geometri atau isomeri cis-trans terjadi karena gugus-gugus berada pada satu sisi atau pada sisi yang berlawanan terhadap letak ikatan rangkap dua. Dalam hal ini, ikatan rangkap membentuk semacam jembatan yang memiliki dua cabang. Syarat terjadinya isomeri geometri adalah harus adanya dua gugus yang berbeda yang terikat pada atom C yang sama.Isomer cis terjadi jika gugus yang sama terletak sesisi (melewati jembatan), sedangkan isomer trans terjadi jika gugus yang sama terletak berseberangan. Contoh : 2-butena (CH3–CH=CH–CH3) memiliki dua isomer geometri, yaitu :

Isomer geometri terjadi karena ketegaran (rigidity) dalam molekul dan hanya dijumpai dalam dua kelompok senyawa yaitu alkena dan senyawa siklik.


Perbedaan kedua senyawa dapat dibuktikan dari perbedaan sifat fisikanya seperti titik didih kedua senyawa yang berbeda. Senyawa cis-1,2-dikloroetena memiliki titik didh 60 derajat celsius sedangkan senyawa trans-1,2-dikloroetena memiliki titik didih 48 derajat celsius.
B.            KONFORMASI DAN KIRALITAS SENYAWA RANTAI TERBUKA
Konformasi Molekul : bentuk molekul dan bagaimana bentuk ini dapat berubah
Konformasi rantai terbuka dan konfoermasi siklik. Untuk memudahkan pembaca, berikut ini contoh konformasi rantai terbuka dan siklik oleh gula.
Pada faktanya, senyawa siklik 5-6 dapat mengalami perubahan konformasi yang diakibatkan sudut ikatan yang mendekati tetrahedral sehingga mengakibatkan efek regangan cincin. Gambar struktur siklik yang datar, sebenarnya tidak dapat mewakili struktur tersebut secara keseluruhan. Contoh : jika sikloheksan memang datar, maka sudut ikatan harus terdistorsi dari sudut 109,5° ke 120°. Jika kita menggambarkan sebuah model dari sikloheksan dengan sudut ikatan antar karbon sama dengan tetrahedral, maka akan terbentuk model kursi lipat (mirip kursi pantai sih). Model inilah ynag dapat mewakili bentuk sikloheksan.
Dari tinjauan energi, bentuk kursi memiliki energi lebih rendah dibandingkan bentuk planar yang kita kenal, sehingga bentuk kursi lebih stabil. Konformasi yang lain yang merupakan alternatif dari cincin 6 atom karbon yaitu bentuk perahu. Dalam konformasi perahu ada 2 subtituen yang mengalami tolakan van der waals. Akibat tolakan inilah energi konformasi perahu sedikit lebih tinggi daripada bentuk kursi.

Kiralitas (chirality) : bagaimana penataan kiri atau kanan atom – atom disekitar sebuah atom karbon dapat mengakibatkan isomeri.  Jika suatu molekul tidak dapat dihimpitkan dengan bayangan cerminnya berarti kedua senyawa enantiomer disebut kiral/chiral (ky-ral dalam bahasa Yunani cheir, berarti “tangan”). Molekul yang mempunyai sisi simetri dalam berbagai kemungkinan dalam konformasinya identik dengan bayangan merupakan senyawa nonkiral atau biasa disebut akiral.
Penyebab adanya kiralitas pada suatu senyawa dikarenakan adanya atom karbon yang mengikat 4 gugus berbeda. Atom karbon tersebut diistilahkan sebagai pusat kiralitas (chirality centers).



Molekul yg memiliki > 2 pusat kiral yaitu Sebuah pusat kiral dalam satu molekul akan memberikan 2 stereoisomer atau sepasang enantiomer. Dua pusat kiral akan memberikan maksimal 4 stereoisomer atau 2 pasang enantiomer. Secara umum, sebuah molekul dengan n pusat kiral mempunyai maksimum 2n stereoisomer atau 2n-1 pasang enantiomer, walaupun mungkin bisa kurang karena mungkin beberapa stereoisomer adalah senyawa meso




Kamis, 22 September 2016

SISTEM NOMENKLATUR

Tatanama organik atau lengkapnya tatanama IUPAC untuk kimia organik adalah suatu cara sistematik untuk memberi nama senyawa organik yang direkomendasikan oleh International Union of Pure and Applied Chemistry (IUPAC). Idealnya, setiap senyawa organik harus memiliki nama yang dari sana dapat digambarkan suatu formula struktural dengan jelas.
Untuk komunikasi umum dan menghindari deskripsi yang panjang, rekomendasi penamaan resmi IUPAC tidak selalu diikuti dalam praktiknya kecuali jika diperlukan untuk memberikan definisi ringkas terhadap suatu senyawa atau jika nama IUPAC lebih sederhana (bandingkan etanol dengan etil alkohol). Jika tidak, maka nama umum atau nama trivial yang biasanya diturunkan dari sumber senyawa tersebutlah yang digunakan.
Tatanama IUPAC menggunakan sejumlah awalanakhiran, dan sisipan untuk mendeskripsikan jenis dan posisi gugus fungsi pada suatu senyawa. Pada kebanyakan senyawa, penamaan dapat dimulai dengan menentukan rantai hidrokarbon Ingold Prelog jika ambiguitas masih saja ada pada struktur rantai hidrokarbon induk. Nama dari rantai induk dimodifikasi dengan akhiran gugus fungsi yang memiliki prioritas tertinggi, sedangkan gugus fungsi sisanya diindikasikan dengan awalan yang dinomori dan disusun secara alfabetis.
NH2CH2CH2OH
Nama senyawa diatas dikonstruksi dengan cara sebagai berikut:
1.    Terdapat dua karbon pada rantai induk, maka diberi nama dasar "et"
2.    Karbon-karbon pada senyawa tersebut berikatan tunggal, maka diberi akhiran "an"
3.    Terdapat dua gugus fungsi pada senyawa tersebut, yakni alkohol (OH) dan amina (NH2).
4.    Alkohol memiliki nomor atom dan prioritas yang lebih tinggi dariamina, dan akhiran dari alkohol adalah "ol", maka akhiran majemuk yang terbentuk adalah "anol".
5.    Gugus amina tidak berada pada satu karbon yang sama dengan gugus OH (karbon nomor 1), namun melekat pada karbon nomor 2, oleh karena itu ia diidentifikasikan dengan awalan "2-amino".
6.    Setelah awalan, nama dasar, dan akhirannya digabung, kita mendapat "2-aminoetanol".
Terdapat pula sistem penamaan lama untuk senyawa organik, dikenal sebagai tatanama umum, yang sering digunakan untuk menamakan senyawa yang sederhana maupun senyawa yang sangat kompleks sehingga nama IUPAC menjadi sangat panjang untuk digunakan.
Sebagai contoh nama senyawa induk dan mengidentifikasi gugus fungsi pada molekul tersebut. Penomoran alkana induk dilakukan dengan menggunakan kaidah prioritas Cahn. Jika mengikuti aturan kaidah prioritas Cahn Ingold Prelog adalah 2-aminoetanol. Namun nama 2-hidroksietanaamina juga secara jelas merujuk pada senyawa yang sama. Alkana yang berantai tunggal memiliki akhiran "-ana" dan diberikan awalan tergantung pada jumlah atom dalam rantai tersebut mengikuti aturan imbuhan pengganda IUPAC :
Jumlah karbon
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
20
30
Awalan
Met-
Et-
Prop-
But-
Pent-
Heks-
Hept-
Okt-
Non-
Dek-
Undek-
Dodek-
Tridek-
Tetradek-
Pentadek-
Eikos-
Triakont
Sebagai contoh alkana paling sederhana CH4 adalah metana dan alkana berkarbon sembilan CH3(CH2)7CH3 adalah nonana. Hal yang sama juga berlaku pada alkana berkarbon 157 CH3(CH2)155CH3, dinamakan heptapentahektana. Tanda kurung digunakan untuk mengindikasikan pengulangan dari molekul yang dikurung, (CH2)155 mengindikasikan sebuah molekul yang terdiri dari 155 rantai CH2. Alkana siklik diberi nama dengan menggunakan awalan "siklo-", sebagai contoh C4H8 dinamakan siklobutana dan C6H12 dinamakan sikloheksana

Alkana bercabang dinamakan dengan menggunakan nama alkana berantai tunggal yang dilekatkan gugus alkil. Gugus alkil ini diberi awalan angka yang mengindikasikan di mana ia melekat pada karbon tertentu. Gugus alkil ini diberi sisipan "-il-". Sebagai contoh (CH3)2CHCH3 bisa dianggap sebagai rantai propana yang dilekatkan dua gugus metil di karbon nomor 2. Senyawa ini diberi nama 2-metilpropana. Awalan angka dapat dihapus jika ia tidak menimbulkan ambiguitas, jadi 2-metilpropana ditulis sebagai metilpropana (struktur 1-metilpropana adalah identik dengan butana).
Jika terdapat ambiguitas dalam posisi substituen, yakni karbon mana yang dinomori sebagai "1", dipilih penomoran dengan angka yang paling kecil. Sebagai contoh, (CH3)2CHCH2CH3 (isopentana) dinamakan 2-metilbutana, bukan not 3-metilbutana. Oleh karena tidak ada struktur lain yang bernama metilbutana kecuali 3-metilbutana, awalan angka 3 ini dapat dihapus.

Jika terdapat cabang-cabang rantai dengan alkil yang sama, posisi mereka dipisahkan dengan koma dan diberi awalan di-, tri-, tetra-, dsb., tergantung pada jumlah cabang tersebut, contohnya C(CH3)4 dinamakan 2,2-dimetilpropana. Jika terdapat gugus alkil yang berbeda, maka mereka disusun menurut susunan abjad dan dipisahkan dengan koma maupun tanda hubung: 3-etil-4-metilheksana. Dalam hal ini rantai induk diambil dari rantai yang paling panjang, oleh karena itu 2,3-dietilpentana adalah nama yang salah. Awalan di-, tri-, dsb tidak dihiraukan ketika kita mengurutkan gugus alkil (contohnya 3-etil-2,4-dimetilpentana, bukan 2,4-dimetil-3-etilpentana). Jika terdapat beberapa kemungkinan rantai paling panjang, maka rantai yang memililki cabang terbanyaklah yang digunakan.

Sub-cabang dari rantai samping diberikan imbuhan sesuai dengan sistem penomoran sekunder pada cabang samping, penomoran dimulai dari titik cabang rantai utama dan seluruh rantai samping dikurung dan dianggap sebagai substituen tunggal. Contohnya 4-(1-metiletil)oktana adalah rantai oktana dengan cabang rantai di karbon nomor 4, cabang tersebut terdiri dari gugus etil dengan gugus metil yang melekat pada cabang etil.
Nomenklatur beberapa Gugus Fungsional
Golongan
Suffix
awalan
asam anhidrida
-anoic anhydride

asam klorida
-anoyl chloride

Asam karboksilat
-anoic acid
carboxy-
nitril
-anenitrile
cyano-
ester
-anoate
carboxyalkyl-
amida
-anamide
amido-
aldehida
-anal
okso-
Keton
-anone
okso-
Alkohol
-anol
hidroksi-
eter
dialkyl ether
alkoksi-
amina
-anamine
amino-

ISOMER STRUKTURAL

Isomer adalah senyawa-senyawa kimia yang mempunyai rumus molekul sama tetapi rumus strukturnya berbeda, sehingga sifat-sifatnya pun berbeda. Dalam isomer struktur, atom diatur dalam susunan yang berbeda-beda. Jika senyawa-senyawa dengan rumus molekul yang sama itu memiliki urutan atom yang berlainan, maka mereka mempunyai stuktur (bangun) yang berlainan dan disebut isomer struktural satu terhadap yang lain.

Dua senyawa organik, yaitu metilbutanoat dan propiletanoat yang mempunyai
rumus molekul sama menampilkan aroma yang berbeda.

Isomer struktural terjadi ketika dua atau lebih senyawa organik memiliki rumus molekul sama, tetapi struktur yang berbeda. Perbedaan-perbedaan ini cenderung memberikan molekul kimia dan sifat fisik yang berbeda . Ada tiga jenis isomer struktural yang Anda perlu anda pelajari:
A.           Isomer Rantai
Isomer-isomer ini muncul karena adanya kemungkinan dari percabangan rantai karbon. Sebagai contoh, ada dua buah isomer dari butan, C4H10. Pada salah satunya rantai karbon berada dalam dalam bentuk rantai panjang, dimana yang satunya berbentuk rantai karbon bercabang.


Isomer rantai muncul karena susunan yang berbeda dari atom karbon yang mengarah ke rantai linear dan bercabang. Isomer rantai memiliki rumus molekul yang sama tetapi berbagai jenis rantai yaitu, linier dan bercabang.
Isomer rantai memiliki sifat kimia yang hampir sama tetapi sifat fisik yang berbeda. Sebagai contoh, isomer rantai bercabang memiliki titik didih lebih rendah daripada rekan-rekan linier mereka. Hal ini karena, yang linier memiliki luas permukaan lebih banyak kontak dan karenanya kekuatan tarik antarmolekul yang maksimum.
B.            Isomer posisi
Pada isomer posisi, kerangka utama karbon tetap tidak berubah. Namun atom-atom yang penting bertukar posisi pada kerangka tersebut. Sebagai contoh, ada dua isomer struktur dengan formula molekul C3H7Br. Pada salah satunya bromin berada diujung dari rantai. Dan yang satunya lagi pada bagian tengah dari rantai.

Jika anda membuat model, tidak mungkin anda bisa mendapatkan molekul yang kedua dari molekul yang pertama dengan hanya memutar ikatan-ikatan tunggal. Anda harus memutuskan ikatan bromin dibagian ujung dan memasangkannya ke bagian tengah. Pada saat yang sama anda harus memindahkan hidrogen dari tengah ke ujung. Contoh lain terjadi pada alkohol, seperti pada C4H9OH

Hanya kedua isomer ini yang bisa anda dapatkan dari rantai dengan empat buah karbon bilamana anda tidak mengubah rantai karbon itu sendiri. Anda boleh, mengubahnya dan menghasilkan 2 buah isomer lagi.

Anda juga bisa mendapatkan isomer posisi dari rantai benzen. Contoh pada formula molekul C7H8Cl. Ada empat isomer berbeda yang bisa anda buat tergantung pada posisi dari atom klorin. Pada sebuah kasus terikat pada atom dari karbon yang berikatan dengan cincin, dan ada tiga buah lagi kemungkinan saat berikatan dengan cincin karbon.
C.            Isomer fungsional
Pada variasi dari struktur isomer ini, isomer mengandung grup fungsional yang berbeda- yaitu isomer dari dua jenis kelompok molekul yang berbeda. Sebagai contoh, sebuah formula molekul C3H6O dapat berarti propanal (aldehid) or propanon (keton).

Ada kemungkinan yang lain untuk formula molekul ini. Sebagai contoh anda dapat mengikat rangkap rantai-rantai karbon dan memanbahkan -OH di molekul yang sama.

Contoh yang lain diilustrasikan dengan formula molekul C3H6O2. Diantaranya terdapat struktur isomer yaitu asam propanoik(asam karboksilat) dan metil etanoat (ester).

ISOMER PADA ALKANA

Dalam senyawa alkana juga ada yang rumus molekulnya sama, tetapi rumus struktur molekulnya berbeda. Mulai dari alkana dengan rumus molekul C4H10 mempunyai dua kemungkinan struktur ikatan untuk menata atom-atom karbonnya seperti di bawah ini:

Untuk pentana (C5H12) memiliki tiga kemungkinan struktur ikatan untuk menata atom-atom karbonnya yaitu:

Kita dapat menyimpulkan dari 2 contoh di atas bahwa semakin bertambah jumlah atom C pada rumus molekul suatu alkana maka semakin banyak isomernya.  Semakin banyak jumlah atom karbon dalam senyawa alkana, kemungkinan rumus struktur juga makin banyak. Oleh karena itu, jumlah isomer struktur juga akan bertambah. Pentana (C5H12) memiliki 3 isomer struktur, heksana (C6H14) memiliki 5 isomer struktur, dan dekana memiliki 75 isomer struktur.

REAKSI GRIGNARD

Reaksi Grignard adalah organologam reaksi kimia di mana alkil , vinil , atau aril - magnesium halida(pereaksi Grignard) menambah sebuah karbonil . Kelompok aldehida atau keton.  Reaksi ini merupakan alat penting untuk pembentukan ikatan karbon-karbon.  Reaksi halida organik dengan magnesium bukan reaksi Grignard, tetapi menyediakan reagen Grignard.

Reagen Grignard membentuk melalui reaksi alkil atau aril halida dengan magnesium logam . Reaksi dilakukan dengan menambahkan halida organik untuk suspensi magnesium dalam ether pelarut, yang menyediakan ligan diperlukan untuk menstabilkan senyawa organomagnesium . Bukti empiris menunjukkan bahwa reaksi berlangsung pada permukaan logam. Reaksi berlangsung melalui transfer elektron tunggal . Dalam reaksi pembentukan Grignard, radikal dapat diubah menjadi karbanion melalui transfer elektron kedua
R-X + Mg → R-X • - + Mg • +
R-X • - → R • + X -
R • + Mg • + → RMG +
RMG + + X - → umum RMgX
Keterbatasan reagen Grignard adalah bahwa mereka tidak mudah bereaksi dengan alkil halida melalui mekanisme S N 2. Di sisi lain, mereka mudah berpartisipasi dalam transmetalation reaksi: Umum
RMgX + Alx → ALR + MGX 2
Untuk tujuan ini, tersedia secara komersial reagen Grignard sangat berguna karena rute ini menghindari masalah dengan inisiasi. Reaksi paling Grignard dilakukan dalam pelarut halus, terutama eter dietil dan THF . Dengan chelating dieter dioksan , beberapa reagen Grignard menjalani reaksi redistribusi untuk memberikan senyawa diorganomagnesium (R = gugus organik, X = halida): Reaksi ini dikenal sebagai keseimbangan Schlenk .

RMgX + dioksan R 2 Mg + MGX

Reactions of Grignard reagents
Dengan senyawa karbonil  Grignard reagents react with a variety of carbonyl derivatives


Aplikasi yang paling umum dari reagen Grignard adalah alkilasi aldehid dan keton, yaitu reaksi Grignard: 


ETHYLENE

Etena adalah nama IUPAC resmi untuk H 2 C = CH 2, tetapi juga berjalan dengan nama umum: Ethylene. Nama Ethylene digunakan karena itu adalah seperti sebuah gugus etil (CH_2CH_3) tapi ada ikatan ganda antara dua atom karbon di dalamnya. Etena memiliki rumus (C_2H_4) dan merupakan alkena sederhana karena memiliki karbon paling sedikit (dua) diperlukan untuk ikatan ganda karbon-karbon.

Dalam etilena setiap atom karbon memiliki tiga sp 2 orbital dan satu p-orbital . Tiga sp 2 orbital terletak pada ~ 120 ° sudut. P-orbital tegak lurus terhadap pesawat ini.Ketika atom karbon mendekati satu sama lain, dua dari sp 2 orbital tumpang tindih untuk membentuk ikatan sigma . Pada saat yang sama, dua-orbital p berdekatan (lagi pada bidang yang sama) dan bersama-sama mereka membentuk pi-ikatan .Untuk tumpang tindih maksimum, p-orbital harus tetap paralel, dan, karena itu, rotasi di sekitar ikatan pusat tidak mungkin,  ini menimbulkan isomer cis-trans . Ikatan ganda lebih pendek dari ikatan tunggal karena p-orbital tumpang tindih dimaksimalkan. Sudut ikatan HCH pada eten adalah 117 derajat dan sudut HCC adalah 121,5 derajat. Ada dua alasan yang menggabungkan untuk menjelaskan deformasi  ini pada eten.

Pertama, dari sudut ikatan dan Teorema Coulson ini kita dapat menentukan bahwa ikatan sigma CH adalah hibridisasi sp2 dan ikatan CC sigma adalah hibridisasi sp. Dari indeks hibridisasi ini, kita melihat bahwa ikatan CC sigma memiliki konten yang lebih tinggi s-karakter (1 bagian s 1,7 bagian p - 37% s) dari obligasi CH (1 bagian s 2,2 bagian p - 31% s). Karena ada lebih s karakter dalam ikatan CC, lebih rendah energi dan elektron karbon sigma akan cenderung mengalir ke arah energi ikatan CC ini lebih rendah. Akibatnya, CC ikatan sigma akan berisi kerapatan lebih elektron dari ikatan CH. Oleh karena itu, tolakan elektron antara obligasi sigma CC dan obligasi sigma CH akan lebih besar dari tolakan elektron antara dua ikatan CH. Maka sudut ikatan HCC akan terbuka sedikit dari ideal 120 derajat dan sudut HCH akan menutup sedikit untuk meminimalkan tolakan elektrostatik ikatan-ikatan.

Kedua, faktor sterik (yang juga benar-benar hanya cara lain untuk menjelaskan tolakan elektron-elektron) juga ikut bermain. Sejauh apa pun cis HC-CH hidrogen-hidrogen tolakan lebih stabil daripada geminal HCH hidrogen-hidrogen tolakan, itu juga akan berfungsi untuk meningkatkan sudut ikatan CCH dan mengecilkan sudut ikatan HCH.