Minggu, 11 September 2016

A.           Orbital Hibrida Dari Nitrogen dan Oksigen
a.              Atom Nitrogen
Ikatan kovalen tidak hanya terbentuk dalam senyawa karbon, tetapi juga dapat dibentuk oleh atom-atom lain. Semua ikatan kovalen yang dibentuk oleh unsur-unsur dalam tabel periodik dapat dijelaskan dengan orbital hibrida. Secara prinsip, pembentukan hibrida sama dengan pada atom karbon. Amonia, NH3, salah satu contoh molekul yang mengandung ikatan kovalen yang melibatkan atom nitrogen. Atom nitrogen memiliki konfigurasi ground-state: 1s2 2s2 2px1 2py1 2pz1, dan memungkinkan atom nitrogen berikatan dengan tiga atom hidrogen.


Ketika terdapat tiga elektron tak berpasangan mengisi orbital 2p, ini memungkinkan orbital 1s dari hidrogen untuk overlap dengan orbital 2p tersebut membentuk ikatan sigma. Sudut ikatan yang terbentuk adalah 107.30, mendekati sudut tetrahedral (109.50). Nitrogen memiliki lima elektron pada kulit terluarnya. Pada hibridisasi sp3, satu orbital sp3 diisi oleh dua elektron dan tiga orbital sp3 diisi masing-masing satu elektron.


Nitrogen memiliki tiga elektron tak berpasangan pada orbital hibrid sp3, ketika satu elektron dalam orbital hibrida tersebuttereksitasi ke orbital p maka terbentuk hibrida baru, yaitu sp2. Elektron pada orbital p digunakan untuk membentuk ikatan pi. Jadi, atom nitrogen yang terhibridisasi sp2 memiliki satu ikatan pi yang digunakan untuk membentuk ikatan rangkap dua, mirip dengan molekul etena. Apabila elektron yang tereksitasi ke orbital p ada dua maka nitrogen memiliki kemampuan membentuk dua ikatan pi atau satu ikatan rangkap tiga (hibridisasi sp).

b.             Atom Oksigen
Elektron pada ground-state atom oksigen memiliki konfigurasi: 1s2 2s2 2px2 2py1 2pz1, dan oksigen merupakan atom divalen.

Dengan melihat konfigurasi elektronnya, dapat diprediksi bahwa oksigen mampu membentuk dua ikatan sigma karena pada kulit terluarnya terdapat dua elektron tak berpasangan (2py dan 2pz).

Oksigen juga dapat terhibridisasi sp2, yaitu dengan mempromosikan satu elektronnya ke orbital p.

B.            Ikatan Rangkap Terkonjugasi
Ikatan rangkap terkonjugasi terjadi dalam senyawa organik yang atom-atomnya secara kovalen berikatan tunggal dan ganda secara bergantian (C=C-C=C-C) dan memengaruhi satu sama lainnya membentuk daerah delokalisasi elektron. Elektron-elektron pada daerah delokalisasi ini bukanlah milik salah satu atom, melainkan milik keseluruhan sistem konjugasi ini. Sistem konjugasi secara umumnya akan menyebabkan delokalisasi elektron di sepanjang orbital p yang paralel satu dengan sama lainnya. Hal ini akan meningkatkan stabilitas dan menurunkan energi molekul secara keseluruhan.
Contoh: Fenol (C6H5OH) memiliki sistem 6 elektron di atas dan di bawah cincin planarnya sekaligus di sekitas gugus hidroksil. Sistem konjugasi secara umumnya akan menyebabkan delokalisasi electron disepanjang orbital p yang parallel satu dengan lainnya. Hal ini akan meningkatkan stabilitas dan menurunkan energi molekul secara keseluruhan. Konjugasi dapat terjadi dengan keberadaan gugus pendonor orbital p yang berbeda. Selain ikatan tunggal dan ganda yang bergantian, sisten konjugasi dapat juga terbentuk oleh keberadaan atom yang memiliki orbital p secara parallel. Contoh, furan.

C.           Benzena dan Resonansi
Kebanyakan struktur kimia dapat digambarkan dengan mudah menggunakan struktur Lewis maupun Kekule, akan tetapi masalah menarik akan muncul berhubungan dengan penggambaran strukturresonansi. Mari kita lihat struktur nitrometana.

Dengan menggambarkan struktur Lewis dari nitrometana, kita membutuhkan ikatan rangkap pada satu oksigen dan ikatan tunggal pada oksigen yang lainnya. Nitrometana memiliki dua atom oksigen yang berbeda apabila kita menggambarkannya dengan struktur Lewis, padahal hasil eksperimen membuktikan bahwa kedua oksigen tersebut adalah ekuivalen. Kedua ikatan nitrogen-oksigen memiliki panjang ikatan yang sama, yaitu 122 pm, padahal panjang ikatan tunggal antara nitrogen-oksigen adalah 130 pm dan nitrogen-oksigen rangkap dua adalah 116 pm.
Dengan kata lain, kedua struktur Lewis di atas adalah benar secara individual, tetapi struktur yang lebih tepat adalah intermediet dari keduanya. Bentuk intermediet tersebut dinamakan hibrida resonan. Masalah yang kemudian muncul adalah bahwa struktur Lewis dan struktur garis-ikatan tidak dapat menggambarkan
dengan tepat bentuk dari hibrida resonan. Kedua bentuk struktur Lewis secara individual disebut bentuk resonan, dan lambang dari resonansi adalah tanda panah dengan mata panah di kedua ujungnya.
Perbedaan bentuk resonan haya terdapat pada letak ikatan π dan pasangan elektron bebasnya. Atomatom itu sendiri tidak mengalami perubahan posisi. Contoh lain yang menggambarkan dengan jelas mengenai resonansi adalah struktur benzen. Benzen memiliki enam atom karbon ekovalen dan membentuk sutau cincin aromatis.

Masing-masing struktur benzen di atas adalah benar, tetapi akan lebih tepat digambarkan bentuk hibridanya, yaitu:

Aturan penggambaran bentuk resonansi Untuk menggambarkan bentuk resonansi dengan benar, kita harus mematuhi beberapa aturan berikut ini:
a. Masing-masing bentuk resonan adalah imajiner, tidak nyata. Bentuk yang nyata adalah bentuk hibrid.
b. Bentuk resonan hanya berbeda pada posisi ikatan π dan pasangan elektron bebas.
Dalam struktur resonansi tidak terjadi perubahan posisi atom. Lihat resonansi nitrometana, hanya posisi ikatan π dalam ikatan N=O dan pasangan elektron bebas dari O - saja yang berbeda satu sama lain.

Hal yang sama juga terjadi dengan benzena. Elektron π dalam ikatan rangkap berpindah sebagaimana yang diperlihatkan dengan anak panah. Akan tetapi, atom karbon dan hydrogen tetap pada posisi masing-masing

c. Bentuk resonan yang berbeda dari satu senyawa tidak memiliki ekivalensi
Contohnya adalah aseton yang direaksikan dengan suatu basa kuat. Hasilnya adalah anion aseton dan memiliki dua bentuk resonan. Yang satu memiliki ikatan rangkap C=O dengan muatan negatif pada salah satu karbon, sedangkan bentuk keduanya memiliki ikatan rangkap C=C dan muatan negatif pada atom oksigen. Kedua bentuk resonan tersebut tidak ekivalen, karenanya tidak memiliki bentuk hibrid dari kedua resonansi tersebut.

d. Bentuk resonansi harus valid berdasarkan struktur Lewis, dan mematuhi aturan valensi normal
Struktur resonansi seperti halnya struktur senyawa lain, harus memenuhi aturan oktet. Salah satu contohnya adalah satu dari resonan ion asetat tidak valid karena atom karbonnya memiliki lima ikatan dan sepuluh elektron ikatan
e. Bentuk hibrida resonan lebih stabil dibandingkan bentuk resonan secara individual.

Dengan kata lain, resonansi akan mengarahkan pada stabilitas. Semakin banyak bentuk resonannya maka senyawa tersebut semakin stabil.

2 komentar:

  1. di sini saya ingin bertanya mengenai benzena dan resonansi :
    pertanyaannya yaitu apa yang di maksud dengan struktur resonansi tolong jelaskan dan berikan contohnya!

    BalasHapus
  2. @ismihasanah terima kasih pertanyaannya, saya akan mencoba menjawab Struktur resonansi adalah salah satu dari dua atau lebih struktur Leweis untuk satu molekul yang tidak dapat dinyatakan secara tepat dengan hanya menggunakan satu struktur Lewis. Tanda panah dua arah menyatakan bahwa struktur-struktur yang diberikan merupakan struktur resonansi. Contoh yang menggambarkan dengan jelas mengenai resonansi adalah struktur benzen. Benzen memiliki enam atom karbon ekovalen dan membentuk sutau cincin aromatis.

    BalasHapus